基于热流固耦合的增强型地热有机朗肯循环发电系统性能分析
    点此下载全文
引用本文:王令宝,郭志鹏,卜宪标,李华山,龚宇烈.2023.基于热流固耦合的增强型地热有机朗肯循环发电系统性能分析[J].地球学报,44(1):211-220.
DOI:10.3975/cagsb.2022.100801
摘要点击次数: 700
全文下载次数: 594
作者单位E-mail
王令宝 中国科学院广州能源研究所 wanglb@ms.giec.ac.cn 
郭志鹏 中国科学院广州能源研究所
中国科学技术大学工程科学学院 
 
卜宪标 中国科学院广州能源研究所  
李华山 中国科学院广州能源研究所  
龚宇烈 中国科学院广州能源研究所 gongyl@ms.giec.ac.cn 
基金项目:国家自然科学基金项目(编号: 42102336);广东省自然科学基金项目(编号: 2021A1515011763)
中文摘要:本文建立了耦合井筒、热储、有机朗肯循环发电系统的详细数学模型, 包括三维非稳态热流固耦合模型和有机朗肯循环发电系统热动力学模型, 参考青海省共和县恰卜恰干热岩体地热地质特征, 包括压裂储层、围岩、裂隙、井筒等特征参数, 研究了注入流量、注入温度和井间距对系统净输出功、年均净输出功和热效率的影响规律。结果表明: 在一定的注入流量、注入温度和净间距下, 随着时间的推移, 岩石孔隙压力和热应力作用使得裂隙渗透率增大, 注入泵功耗是降低的, 净输出功和热效率也是降低的。注入流量的增大提高了膨胀机轴功、注入泵功耗和生产温度衰减速率, 进而导致热效率降低, 存在最优的注入流量50 kg/s, 使得年均净输出功达到最大值1 470.1 kW。注入温度的增大可以提高系统热效率, 降低净输出功的年均衰减速率, 当注入温度为60 ℃时, 年均净输出功最大。井间距的增大减缓了生产温度的衰减速率, 有利于热效率的提高, 但是也同时也增大了膨胀机轴功和注入泵功耗。当分支井间距为450 m时, 年均净输出功达到最大值1 497.3 kW。此研究可为增强地热发电系统的开发利用提供指导。
中文关键词:增强地热系统  有机朗肯循环  热流固耦合  净输出功  热效率
 
Numerical Simulation of Organic Rankine Cycle for Enhanced Geothermal Systems Based on a Thermal-hydraulic-mechanical Coupling Model
Abstract:In this study, a detailed thermodynamic model coupled with wellbore, heat storage, and organic Rankine cycle power generation system was established, including a 3D unsteady thermal–hydraulic–mechanical (THM) coupled model and organic Rankine cycle power generation system thermodynamic model. Based on the geothermal geological characteristics of the Qiabuqia geothermal field in Gonghe Basin, Qinghai Province and the characteristic parameters of fractured reservoir, surrounding rock, fracture and wellbore, the effects of injection flow rate, injection temperature, and well spacing on net power output, annual net power output, and thermal efficiency were investigated. Under a certain injection flow rate, injection temperature, and net spacing, the pore pressure and thermal stress of rock increased the fracture permeability, and afterward, the power consumption of the injection pump and the net output work and thermal efficiency decreased. The increase in the injection flow improved the shaft work of the expander, power consumption of the injection pump, and drop rate of the production temperature, resulting in a decrease in thermal efficiency. The optimal injection flow rate at which the annual net power output reached a maximum value (1 470.1 kW) was 50 kg/s. The increase in injection temperature can improve thermal efficiency and reduce the annual drop rate of net power output. When the injection temperature was 60 ℃, the annual net output power was the maximum. The increase in well spacing slowed down the drop rate of production temperature, and this is conducive to the improvement of thermal efficiency; however, it also increased the power of the expander shaft and consumption power of the injection pump. The optimal well spacing at which the annual net power output reached the maximum value (1 497.3 kW) was 450 m. This study can provide guidance for the development and utilization of enhanced geothermal power generation system.
keywords:enhanced geothermal system  ORC  THM  net power output  thermal efficiency
查看全文  查看/发表评论  下载PDF阅读器
版权所有 《地球学报》编辑部 Copyright©2008 All Rights Reserved
主管单位:中华人民共和国自然资源部 主办单位:中国地质科学院
地址: 北京市西城区百万庄大街26号,中国地质科学院东楼317室 邮编:100037 电话:010-68327396 E-mail: diqiuxb@126.com
技术支持:北京勤云科技发展有限公司
京ICP备05029128号-6

京公网安备 11010202007616号